
Serving Netflix Video
Traffic at 400Gb/s and

Beyond

Drew Gallatin
NAB Show, April 2022

Serving Netflix Video
Traffic at 400Gb/s and

Beyond

Drew Gallatin
NAB Show, April 2022

800Gb/s

 Netflix Workload:

● Serve only static media files
● Pre-encoded for all codecs/bitrates

○ Video quality is of the utmost
importance, so we don’t transcode on
the server

● Greatly simplifies server workload

 Netflix Video Serving Stack

● FreeBSD-current
● NGINX web server
● Video served via asynchronous

sendfile(2) and encrypted using kTLS

 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● Network-centric NUMA (2019)
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results

 Sendfile

● Since we are serving static files, we can
use sendfile(2)

● Sendfile directs the kernel to send data
from a file descriptor to a TCP socket

● This eliminates the need to copy data
into or out of the kernel

Netflix Video Serving Data Flow

CPU

Disks Memory Network Card

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile, data is sent directly
from disk to network and not
touched by the host CPU.

 Problem: Disk reads can block
sendfile

● When an nginx worker is blocked, it
cannot service other requests

● Solutions to prevent nginx from blocking
like aio or thread pools scale poorly

 Solution: Asynchronous sendfile

● sendfile() becomes “fire and forget”
● Empty buffers are appended to the TCP

socket buffer. TCP stops when it sees
an empty buffer.

● When disk read completes, disk
interrupt handler informs TCP it is ready
to send

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet

Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous Sendfile Performance
● Intel Xeon E5-2697v2

○ 12 cores @ 2.7GHz
○ 256GB DDR3-800
○ Chelsio T580 40GbE

● 23Gbs -> 36Gb/s

 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● Network-centric NUMA (2019)
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results

What’s TLS?
● Transport Layer Security
● TLS encrypts traffic between clients and the OCA

TLS Prevents Sendfile & Triples Memory BW

Disks Memory Network Card

Bulk Data

Metadata

100GB/s 100GB/s

Data is touched by CPU:
1. Copy from kernel to userspace
2. Read data to encrypt
3. Write encrypted data to memory
4. Copy from userspace to kernel

10
0G

B
/s

10
0G

B
/s 10

0G
B

/s

10
0G

B
/s

 Solution: Move TLS into the kernel

● Eliminates copies between userspace and kernel
● Restores sendfile dataflow
● TLS handshakes (eg, session setup, session

resumption) handled in userspace.
● TLS state handed to the kernel
● Kernel does bulk crypto as part of sendfile pipeline

 Asynchronous sendfile + kTLS

Internet
Disks

Socket Buffer

 Asynchronous sendfile

Internet
Disks

Socket Buffer

 Asynchronous sendfile + kTLS

Internet
Disks

Socket Buffer

 Asynchronous sendfile + kTLS

Internet
Disks

Socket Buffer

 Asynchronous sendfile + kTLS

Internet
Disks

Socket Buffer

 Asynchronous sendfile + kTLS

Internet

Disks

Socket Buffer

 Asynchronous sendfile + kTLS

Internet
Disks

Socket Buffer

Netflix 800Gb/s Video Serving Data Flow

Disks Memory Network Card

10
0G

B
/s

10
0G

B
/s

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth
is needed to serve 800Gb/s

 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● NUMA (2019)
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results

 What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can
be “closer” to some CPU cores

Memory

CPU

Network Card

Disks

Multi CPU Before NUMA

Memory

Network Card

Disks

CPU
North Bridge

Memory access
was UNIFORM:

Each core had
equal and direct
access to all
memory and IO
devices.

Memory

CPU

Network Card

Disks

Multi Socket system with NUMA:

Memory

Network Card

DisksMemory access can be
NON-UNIFORM
● Each core has

unequal access to
memory

● Each core has
unequal access to
I/O devices

CPU

NUMA Bus

Memory

CPU

Network Card

Disks

Present day NUMA:

Memory

Network Card

DisksEach locality zone
called a
“NUMA Domain” or
“NUMA Node” CPU

NUMA Bus

Node 0 Node 1

 Strategy: Keep as much of our
400GB/sec of bulk data off the
NUMA fabric as possible

● Bulk data congests NUMA fabric and leads to
CPU stalls.

Dual AMD: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:

Dual AMD: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

Dual AMD: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing

Dual AMD: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing

Dual AMD: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing
● DMA from memory to network

○ Fourth NUMA crossing

 Worst Case Summary:

● 4 NUMA crossings
● 400GB/s of data on the NUMA fabric

○ Fabric saturates, cannot handle the load.
○ CPU Stalls, saturates early

Dual AMD: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:

Dual AMD: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual AMD: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption

Dual AMD: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual AMD: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● DMA from memory to Network

0 NUMA crossings!

 Best Case Summary:

● 0 NUMA crossings
● 0GB/s of data on the NUMA

fabric

Impose order on the chaos..
somehow:

● Disk centric siloing
○ Try to do everything on the NUMA node where

the content is stored
● Network centric siloing

○ Try to do as much as we can on the NUMA
node that the LACP partner chose for us

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption
● CPU Writes encrypted data
● DMA from memory to Network

 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 100GB/s of data on the NUMA fabric
○ Still less than fabric bandwidth

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● NIC Reads data for transmit

○ First NUMA bus crossing

 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than theoretical fabric bandwidth

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● NIC Reads data for transmit

 Worst Case Summary:

● 0 NUMA crossing on average
○ 0% of disk reads across NUMA

● 0GB/s of data on the NUMA fabric

 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● NUMA (2019)

● Inline Hardware (NIC)
kTLS (2022)

● 800G initial results

Why offload kTLS?
● kTLS uses almost half of our CPU cycles

Netflix 800Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

10
0G

B
/s

10
0G

B
/s

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth
is needed to serve 800Gb/s

Mellanox (NVIDIA) NIC kTLS

● Discussed with Mellanox starting in 2016
● First prototypes of CX6-DX in early 2020
● Iterated for 2+ years to make it production ready
● kTLS offload enabled in production last quarter

 What is NIC kTLS?:

● Hardware Inline TLS
● TLS session is established in userspace.
● When crypto is moved to the kernel, the kernel

passes crypto keys to the NIC
● TLS records are encrypted by NIC as the data

flows through it on transmit
○ No more detour through the CPU for crypto
○ This cuts memory BW & CPU use in half!

Netflix 800Gb/s Video Serving Data Flow

Disks Memory Network Card

10
0G

B
/s

10
0G

B
/s

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth
is needed to serve 800Gb/s

Netflix 800Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

10
0G

B
/s

10
0G

B
/s

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth
is needed to serve 800Gb/s

Netflix 800Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

Bulk Data

Metadata

100GB/s 100GB/s

Using sendfile and NIC kTLS, data
is encrypted by the NIC.

800Gb/s == 100GB/s

~200GB/sec of memory bandwidth
is needed to serve 800Gb/s

 Mellanox ConnectX-6 Dx

● Offloads TLS 1.2 and 1.3 for AES GCM cipher
● Retains crypto state within a TLS record

○ Means that the TCP stack can send partial
TLS records without performance loss

● If a packet is sent out of order (eg, a TCP
retransmit), it must re-DMA the record containing
the out of order packet

 CX6-DX: In-order Transmit

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

014482896434457927240

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

86881013611584130321448015298

 CX6-DX: TCP Retransmit

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

TCP segments of Plaintext TLS Record

Host Memory

NIC

PCIe
Bus

100GbE Network

01448289643445792724086881013611584130321448015928

TCP segments of Encrypted TLS Record

14480

 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● NUMA (2019)
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results

 800G Prototype Details

● Dell R7525
● 2x AMD EPYC 7713 64c / 128t (128c / 256t total)
● 3x xGMI links between sockets
● 512 GB RAM
● 4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
● 16x Intel Gen4 x4 14TB NVME

 Initial Results: 420Gb/s

● Ran in 1NPS mode
● Network Siloing mode
● CPUs mostly idle

○ AMD guessed that xGMI was down-linking to x2
○ Set xGMI speed to 18GT/s and forced link width to

x16, and disabled dynamic link width management

 Results with DLWM forced: 500Gb/s

● Ran in 1NPS mode
● Network Siloing mode

○ NVME data DMA’ed to NIC’s NUMA Node
● xGMI link usage very uneven:

○ 15GB/s, 4GB/s and 2GB/s
○ Turns out that NVME is not evenly distributed by

IO Quadrants
○ Even hashing of cross-socket to xGMI depends on

evenly distributed IO

 How to Improve xGMI Hashing

● Hashing based on device doing DMA
○ NVME is very uneven
○ NICs are much less uneven
○ “Network Siloing” normally does DMA from NVME

to remote node, local to NIC
● Flip things, and do DMA from NVME to local buffers

○ “Disk centric siloing”
● The NICs are now doing DMA across xGMI

 Results with Disk Centric Siloing:
670Gb/s

● Much more even xGMI hashing:
○ 10/10/7 GB/s

● Problematic because:
○ Daemon that “locks” content into memory is not

NUMA aware & can lead to page daemon
thrashing.

○ Still pressure on xGMI links

 Strict Disk Centric Siloing

● Move Egress NIC to be local to NUMA node with disk
○ No bulk data crosses NUMA Bus

● Incoming TCP traffic still uses original NIC
○ Metadata crosses NUMA bus

 “Strict Disk Centric Siloing” Results:
720Gb/s

● Much less xGMI traffic
● Limited by NIC output drops, not CPU.
● Cause of drops is now largely due to:

○ Page daemon interfering with nginx on popular
node

○ Uneven loading on NICs due to content popularity
differences. (NICs on popular node doing 94Gb/s,
others doing 84Gb/s)

 Credits

● Async Sendfile
○ Gleb Smirnoff, Konstantin Belousov, Igor Sysoev, Jeff Roberson, Scott Long

● kTLS
○ Scott Long, Randall Stewart, Drew Gallatin, John Mark Gurney, John Baldwin

● NUMA
○ Drew Gallatin, Jeff Roberson, Mark Johnston

● Inline Hardware (NIC) kTLS
○ John Baldwin, Drew Gallatin, Hans Petter Seleaski, Boris Pismenny, Navdeep Parhar

 Credits

● Experimental 800GbE Host
○ Warren Harrop and the Netflix hardware team
○ MBX (integrator)
○ AMD (EPYC 7713 CPUs)
○ Dell (PowerEdge R7525)
○ Mellanox/NVIDIA (ConnectX-6 Dx NICS)
○ Intel (P5316 NVME)

Thank you!

