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 Netflix Workload:

● Serve only static media files
● Pre-encoded for all codecs/bitrates

○ Video quality is of the utmost 
importance, so we don’t transcode on 
the server

● Greatly simplifies server workload



 Netflix Video Serving Stack

● FreeBSD-current
● NGINX web server
● Video served via asynchronous 

sendfile(2) and encrypted using  kTLS



 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● Network-centric NUMA (2019) 
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results



 Sendfile

● Since we are serving static files, we can 
use sendfile(2)

● Sendfile directs the kernel to send data 
from a file descriptor to a TCP socket

● This eliminates the need to copy data 
into or out of the kernel
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Using sendfile, data is sent directly 
from disk to network and not 
touched by the host CPU.



 Problem: Disk reads can block 
sendfile

● When an nginx worker is blocked, it 
cannot service other requests

● Solutions to prevent nginx from blocking 
like aio or thread pools scale poorly



 Solution: Asynchronous sendfile

● sendfile() becomes “fire and forget”
● Empty buffers are appended to the TCP 

socket buffer. TCP stops when it sees 
an empty buffer.

● When disk read completes, disk 
interrupt handler informs TCP it is ready 
to send
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 Asynchronous Sendfile Performance
● Intel Xeon E5-2697v2

○ 12 cores @ 2.7GHz
○ 256GB DDR3-800
○ Chelsio T580 40GbE

● 23Gbs -> 36Gb/s



 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● Network-centric NUMA (2019) 
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results



What’s TLS?
● Transport Layer Security
● TLS encrypts traffic between clients and the OCA
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 Solution: Move TLS into the kernel

● Eliminates copies between userspace and kernel
● Restores sendfile dataflow
● TLS handshakes (eg, session setup, session 

resumption) handled in userspace.
● TLS state handed to the kernel
● Kernel does bulk crypto as part of sendfile pipeline
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Using sendfile and software  kTLS, 
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth 
is needed to serve 800Gb/s 



 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● NUMA (2019) 
● Inline Hardware (NIC) kTLS (2022)
● 800G initial results



 What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can 
be “closer” to some CPU cores
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 Strategy:  Keep as much of our 
400GB/sec of bulk data off the 
NUMA fabric as possible

● Bulk data congests NUMA fabric and leads to 
CPU stalls.
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 Worst Case Summary:

● 4 NUMA crossings
● 400GB/s of data on the NUMA fabric

○ Fabric saturates, cannot handle the load.  
○ CPU Stalls, saturates early
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 Best Case Summary:

● 0 NUMA crossings
● 0GB/s of data on the NUMA 

fabric



Impose order on the chaos.. 
somehow:

● Disk centric siloing
○ Try to do everything on the NUMA node where 

the content is stored
● Network centric siloing

○ Try to do as much as we can on the NUMA 
node that the LACP partner chose for us
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 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 100GB/s of data on the NUMA fabric
○ Still less than  fabric bandwidth



Dual AMD: Worst Case Data Flow 
With Disk Centric NUMA Siloing

CPU

Disks Memory Network 
Card

CPU

Disks Memory Network 
Card

Steps to send data:



Dual AMD: Worst Case Data Flow 
With Disk Centric NUMA Siloing

CPU

Disks Memory Network 
Card

CPU

Disks Memory Network 
Card

Steps to send data:
● DMA data from disk to memory



Dual AMD: Worst Case Data Flow 
With Disk Centric NUMA Siloing

CPU

Disks Memory Network 
Card

CPU

Disks Memory Network 
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption



Dual AMD: Worst Case Data Flow 
With Disk Centric NUMA Siloing

CPU

Disks Memory Network 
Card

CPU

Disks Memory Network 
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data



Dual AMD: Worst Case Data Flow 
With Disk Centric NUMA Siloing

CPU

Disks Memory Network 
Card

CPU

Disks Memory Network 
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● NIC Reads data for transmit

○ First NUMA bus crossing



 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 100GB/s of data on the NUMA fabric
○ Less than theoretical fabric bandwidth
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● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● NIC Reads data for transmit



 Worst Case Summary:

● 0 NUMA crossing on average
○ 0% of disk reads across NUMA

● 0GB/s of data on the NUMA fabric



 Timeline:

● Asynchronous Sendfile (2014)
● Kernel TLS (2016)
● NUMA (2019) 

● Inline Hardware (NIC) 
kTLS (2022)

● 800G initial results



Why offload kTLS?
● kTLS uses almost half of our CPU cycles 
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Using sendfile and software  kTLS, 
data is encrypted by the host CPU.

800Gb/s == 100GB/s

~400GB/sec of memory bandwidth 
is needed to serve 800Gb/s 



Mellanox (NVIDIA) NIC kTLS 

● Discussed with Mellanox starting in 2016
● First prototypes of CX6-DX in early 2020
● Iterated for 2+ years to make it production ready
● kTLS offload enabled in production last quarter



 What is NIC kTLS?:

● Hardware Inline TLS
● TLS session is established in userspace.
● When crypto is moved to the kernel, the kernel 

passes crypto keys to the NIC
● TLS records are encrypted by NIC as the data 

flows through it on transmit
○ No more detour through the CPU for crypto
○ This cuts memory BW & CPU use in half!
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Using sendfile and NIC  kTLS, data 
is encrypted by the NIC.

800Gb/s == 100GB/s

~200GB/sec of memory bandwidth 
is needed to serve 800Gb/s 



 Mellanox ConnectX-6 Dx

● Offloads TLS 1.2 and 1.3 for AES GCM cipher
● Retains crypto state within a TLS record

○ Means that the TCP stack can send partial 
TLS records without performance loss

● If a packet is sent out of order (eg, a TCP 
retransmit), it must re-DMA the record containing 
the out of order packet



 CX6-DX: In-order Transmit
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 CX6-DX: TCP Retransmit
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 800G Prototype Details

● Dell R7525
● 2x AMD EPYC 7713 64c / 128t  (128c / 256t total)
● 3x xGMI links between sockets
● 512 GB RAM
● 4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
● 16x Intel Gen4 x4  14TB NVME



 Initial Results: 420Gb/s

● Ran in 1NPS mode
● Network Siloing mode
● CPUs mostly idle

○ AMD guessed that xGMI was down-linking to x2
○ Set xGMI speed to 18GT/s and forced link width to 

x16, and disabled dynamic link width management



 Results with DLWM forced: 500Gb/s

● Ran in 1NPS mode
● Network Siloing mode

○ NVME data DMA’ed to NIC’s NUMA Node
● xGMI link usage very uneven:

○ 15GB/s, 4GB/s and 2GB/s
○ Turns out that NVME is not evenly distributed by 

IO Quadrants
○ Even hashing of cross-socket to xGMI depends on 

evenly distributed IO



 How to Improve xGMI Hashing

● Hashing based on device doing DMA
○ NVME is very uneven
○ NICs are much less uneven
○ “Network Siloing” normally does DMA from NVME 

to remote node, local to NIC
● Flip things, and do DMA from NVME to local buffers

○ “Disk centric siloing”
● The NICs are now doing DMA across xGMI



 Results with Disk Centric Siloing: 
670Gb/s

● Much more even xGMI hashing:
○ 10/10/7 GB/s

● Problematic because:
○ Daemon that “locks” content into memory is not 

NUMA aware & can lead to page daemon 
thrashing.

○ Still pressure on xGMI links



 Strict Disk Centric Siloing

● Move Egress NIC to be local to NUMA node with disk
○ No bulk data crosses NUMA Bus

● Incoming TCP traffic still uses original NIC
○ Metadata crosses NUMA bus



 “Strict Disk Centric Siloing” Results: 
720Gb/s

● Much less xGMI traffic
● Limited by NIC output drops, not CPU.
● Cause of drops is now largely due to:

○ Page daemon interfering with nginx on popular 
node

○ Uneven loading on NICs due to content popularity 
differences. (NICs on popular node doing 94Gb/s, 
others doing 84Gb/s)
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