

Applying AI/ML techniques for Live Video Transcoding

Ramdas Satyan

AGENDA

Introduction

- Requirements for live video transcoding at scale
 - AMD Alveo MA35D transcode card
- AI/ML techniques for live video transcoding
- ML tools featured in this talk
 - Region of Interest (ROI)
 - Content Aware Encoding (CAE)
- Results

Live Streaming

- Reshaping the way we engage, communicate and entertain
- Gaining huge traction among people seeking real-time experiences and interactions
- It is thrilling to be part of live events from anywhere in the world
- Platforms like Twitch, YouTube Live, Facebook Live and others are go-to destinations
- 70% of the global streaming market is now Live (from a 2021 survey)

Real-time transcoding

- Plays a crucial role in delivering high-quality, compatible and optimized video content
- To cater to audiences with a range of devices and bandwidth constraints

Requirements of live transcoding at scale

- Everyone is a streamer!
 - Many Ingress and Egress streams (many to many)
- Live streaming platforms are generating videos at a massive scale (many petabytes a day)
- Compute is increasing exponentially
 - To support next generation standards (AV1, AV2, VVC etc.)
 - To cater to higher resolutions (8K) and frame rates (120fps)
- These interactive media applications require very low latency

>Use of Traditional CPUs: Economically unfeasible

- The sheer number of servers needed would blow up the CAPEX and OPEX
- Power and cooling is equally a big concern

Solution: Video acceleration

• Offload the entire video pipeline using an ASIC to cater to each of the above requirements

5

AMD Alveo MA35D Media accelerator

- Video transcode card for the data center
- 5nm ASIC architecture
 - Optimized for high channel density
 - Designed to prioritize high video quality while maintaining power efficiency
- Supports encoding and decoding of H.264, H.265/HEVC and AV1 standards
- Striving to deliver software-encoder-level video quality
- Video Quality is comparable to
 - H.264: x264 medium preset
 - H.265/HEVC: x265 medium preset
 - AV1: x265 slow preset

of channels: Up to 32x 1080p60 Power: 1 watt per 1080p60 channel Latency: 4K encode at 8ms max latency Al processer: 22 TOPS compute

[Public]

Innovation in Video Processing Targeted ASIC for Interactive Streaming

AI/ML techniques for video transcoding

ML tools presented in this talk

Value proposition

1.Region of Interest (ROI) improves visual quality by redistributing bits to certain important areas within a frame

2. Content Aware Encoding (CAE) allows content distributors to stream video at lower bitrate without compromising on video quality (reduces streaming costs) [Public]

ROI

ML based ROI

- In some applications, certain regions in a frame are more important
- Two such regions are
 - Face
 - Text
- ML is used to detect such regions of interest.
- Encoder smartly redistributes bits on regions of interest by adjusting block level quantization parameter (delta-QP) using a ROI map
- Results in improved visual quality in ROI
- Can also be used to reduce the bit-rate by maintaining same video quality as before to achieve additional bandwidth savings

Model Architecture

- · Customized network architecture that meets the following requirements
 - Easily fits MA35D ML engine and achieves high throughput
 - Maintains high accuracy
 - 10x less compute over standard MobileNet-V1
 - Model operates on native HD/SD resolution
 - This avoids input distortions and pre-processing
 - Directly produces a block level (16x16) ROI map
 - This avoids heavy post processing

Text ROI

- Trained on COCO-Text dataset
- Good accuracy for small and medium text (receptive field is 80x80 pixels)
- Model can detect both English and non-English (Chinese) text
- Large text ignored as the encoder does a good job

Face ROI

- Trained on WIDER dataset
- Good accuracy for small and medium faces
- Side face detection needs some improvement
- Part of Large face detected (beyond receptive field)

Examples of ROI detection

ROI ML Inference Pipeline

Face ROI results

Without ROI Coding

MA35D AV1: FourPeople@125 Kbps, ~VMAF 75

With ROI Coding

Text ROI results

MA35D AV1: Ninja_720p@2M, VMAF= ~70

MA35D HEVC: Fornite_720p@2M, VMAF= ~70

[Public]

CAE

Static ABR ladder

- Pre-determined set of bit-rate and resolution combinations are used
- This one size fits all approach has these limitations
 - Inefficient use of bandwidth
 - Sub optimal video quality

Complexity

19

Content Aware Encoding (CAE)

VOD

- Netflix pioneered per-shot encoding
- Each shot is encoded multiple times in many resolutions
- Final encoder decisions are made based on a convex hull*

Live

- No luxury of "infinite" latency
- Real-time Transcoding at scale => limits processing capacity

ML based CAE for live streaming

- Problem definition
 - How to find the best possible quality/bit-rate trade-off in real-time with limited compute while maintaining the latency?
- What do we have in our arsenal?
 - Some knowledge of incoming content (limited lookahead)
 - Deep learning toolbox
- Our approach
 - Using the information from the incoming input, train deep neural networks to predict "optimum" encoder parameters
 - Dynamically adapt bitrate based on content to optimize quality per resolution

Input stats used

Lookahead stats used

- Frame SAD Ref0 Histogram (16,1)
- Frame MV16 Ref0 Histogram (16,1)
- Frame Activity Histogram (512, 1)
- Frame Luma Histogram (256, 1)

Create Input vectors (X)

- Generate segment wise vector sum of SAD, MV, Activity and Luma
- Stacking sum of SAD, MV and Activity vector to create (800,1) vector
- Normalize them separately

DNN based Complexity predictor

- Fully connected regression network
- 800 input nodes
- 11 hidden layers
- 1 output number suggesting complexity
- Loss function is MSE
- Optimizer is RMS prop

Ground Truth

- We believe a minimum quality bar of VMAF 90 is acceptable for live streaming
- Model is learning about complexity as follows
 - Easy clips will reach high quality at lower bitrates in comparison with complex clips
- Training
 - Our video dataset is broken down to segments (2sec intervals)
 - For example: 1080p clips are encoded from 500kbps to 10Mbps (interval of 250kbps)
 - Y = minimum bitrate where VMAF >= 90

Model details

Total dataset: 10451 segments 70% training, 20% testing, 10% validation

Accuracy: 88.75% MAE: 160 (kbps)

Confusion matrix (Actual vs Predicted bitrate)

	500 -	124	162	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	750 -	97	260	98	5	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
true label	1000 -	0	80	181	64	12	3	0	0	2	0	0	0	0	0	0	0	0	0	0
	1250 -	0	6	60	112	49	8	0	1	0	0	0	0	0	0	0	0	0	0	0
	1500 -	0	1	4	39	67	28	7	6	1	0	0	0	0	0	0	0	0	0	0
	1750 -	0	0	2	14	32	51	21	15	0	1	0	0	0	0	1	0	0	0	0
	2000 -	0	1	2	1	12	37	38	28	13	3	3	1	0	0	0	0	0	0	0
	2250 -	0	0	0	4	4	8	33	31	18	8	2	1	1	1	0	1	0	0	1
	2500 -	0	0	0	0	1	3	9	32	17	14	8	5	2	0	0	0	0	0	2
	2750 -	0	0	0	0	0	1	3	4	17	23	21	17	4	0	0	0	0	0	0
	3000 -	0	0	0	0	1	0	3	4	9	13	28	18	6	1	0	0	0	0	2
	3250 -	0	0	0	0	0	0	0	1	9	10	15	19	13	4	2	0	1	0	0
	3500 -	0	0	0	0	0	0	0	2	0	4	5	10	14	12	6	2	0	0	1
	3750 -	0	0	0	0	0	0	1	1	0	1	6	8	8	6	6	4	3	3	1
	4000 -	0	0	0	0	0	0	0	1	1	1	0	4	8	4	9	4	7	0	1
	4250 -	0	0	0	0	0	0	0	0	1	0	0	1	3	3	7	12	5	3	4
	4500 -	0	0	0	0	0	0	0	0	0	0	2	1	2	6	5	5	5	5	7
	4750 -	0	0	0	0	0	0	0	0	0	1	0	2	0	1	3	3	4	5	10
	5000 -	0	0	0	0	0	0	0	0	0	1	0	1	0	1	4	4	5	10	170
	50° 15° 50° 25° 50° 15° 20° 25° 50° 215° 30° 35° 50° 35° 50° 55° 50° 55° 50°																			
									•	n cui	cicu	abe								

How is this model used?

- Model is used to make prediction for every frame
- Minimum lookahead of 4 frames needed to achieve good accuracy
- Policy block determines the final bitrate
 - Customers have control based on their use case and requirements
 - Sample policy used
 - Primary motive is to preserve quality and bit-rate changes are conservative
 - Lower bitrate slowly over segments (when complexity decreases)
 - Increase bitrate immediately (when complexity increases)

Results: CAE bitrate savings

- ~ 100 popular 1080p clips were downloaded from twitch.tv
- Encoder used: AMD MA35D AV1 encoder
- Comparison: CBR @4Mbps and CAE @recommended bitrate

		Avg	Avg	Bit-rate
Complexity	# of streams	VMAF CBR	VMAF CAE	Savings
low	27	96.38	95.63	35.08%
med	32	93.41	92.92	9.12%
high	43	82.79	82.66	1.35%

Subjective assessment of CAE Resolution:1920x1080 Encoder: **AMD MA35D AV1 encoder**

Fixed: 3.90Mbps VMAF: 94.36 CAE: 2.26Mbps VMAF: 92.0

Thank you

AMDJ