
BEST PRACTICES FOR
ENCODING H.264 AND HEVC
Jan Ozer, Streaming Learning Center
Jan.ozer@streaminglearningcenter.com

mailto:Jan.ozer@streaminglearningcenter.com

Best Practices for H.264 and HEVC Encoding
• H.264

• Choosing the optimal GOP size
• Benefits of a variable GOP
• Bitrate control
• Choosing a preset
• Choosing the optimal thread count
• Best AWS CPU

• HEVC
• Choosing the optimal GOP size
• Benefits of a variable GOP
• Bitrate control
• Choosing a preset
• Choosing the optimal thread count
• Working with Wavefront Parallel

Processing
• Both

• Optimizing scaling for lower rung
production

Fundamentals

• Top rung target quality
• Premium content – 93 – 95 VMAF
• UGC – 85 – 92 VMAF
• Getting there:

• Choose configuration options
• Adjust bitrate to hit the target

• VMAF
• Measure harmonic mean
• And low-frame (potential for

transient quality problems)

• Just noticeable difference (how
much does a difference matter?)
• Greater than 50% of viewer notice
• ~ 3 VMAF point

• Most differences discussed here will
be much less
• Still, .4 VMAF here, .6 there, pretty soon

you’re close to a JND
• Plus – the target is 95 (or whatever)
• After a few adjustments, you will have to

increase the bitrate to achieve the target
(boosting your bandwidth costs)

H.264 Agenda
• Choosing the optimal GOP size

• Benefits of a variable GOP
• Bitrate control
• Choosing a preset
• Choosing the optimal thread count
• Best AWS CPU

Uber Best Practice

• Content Adaptive Encoding is the ultimate best practice
• None of the techniques discussed herein can touch CAE as an optimization technique

Best Practice 1 – Choose Longest Possible GOP Size

• What: GOP size (I-frame
interval) is a key config option
in all encodes

• Historical
• Very small (like .5 second) for

MPEG-2
• Very long (10-20 seconds) for

downloaded video
• Typically, 2-5 seconds for adaptive

bitrate video
• Must divide evenly into segment size

• Question
• How does GOP size impact quality

• Test – 13 files in 4 categories
• Entertainment
• Sports
• Animation
• Office

Best Practice 1: Longer is Better

• Benefit significant at lower range
• Then diminishing returns

• Key limit: must divide evenly into
segment size
• 10 second copy – 1/2/5/10
• Why not try 10? Check for playability

Diminishing returns

Synthetic clips
(screencam, PPT) most

susceptible

BP2: Consider Variable GOP Sizes

• So, longer GOP + GOPs at
scene changes

• Need packager/player
compatible with variable
segment sizes

https://bit.ly/variable_GOP

Meta’s David Ronca, “The optimal
GOP size is aligned to the encoder’s
placement of intra frames with a max
spacing between 5-10 seconds. That
is, let the encoder decide as much as
possible.

I-frames at scene
changes boosts
low-frame score

https://bit.ly/variable_GOP

Best Practice 1: GOP Size

• Use the longest possible GOP size (segment size)
• Use variable GOPs/segment sizes if supported

Best Practice 2: Optimize Bitrate Control

• Data rate:
• Assigned to file during encoding
• Bitrate control - how encoder allocates the data rate

• Question: What’s the best bitrate control technique (and
how much difference in quality and throughput?)
• CBR (constant bitrate encoding)
• Two-pass VBR (variable bitrate encoding)

• 150%, 200%, 400% constrained
• Capped CRF (constant rate factor)

2-Pass VBR

• Constrained VBR
• Target = 1x
• Max/VBV = 2x

• Typically ranges from 1.1x to 4x
• Tested 1.5x, 2x, and 4x

• Bitrates and GOP size customized
for each file
• Target ~94 VMAF
• 2 seconds for 24, 25, 30, 60 fps

• Pros
• Overall and low-frame quality

• Cons
• Encoding time increase
• Bitrate variability
• Max frame values (deliverability)

• Use case
• VOD

ffmpeg -y -i input.mp4 -c:v libx264 -b:v 2M -maxrate 4M -bufsize 4M -
preset veryslow -g 60 -threads -threads 8 -pass 1 -f mp4 NUL“

ffmpeg -y -i input.mp4 -c:v libx264 -b:v 2M -maxrate 4M -bufsize 4M -
preset veryslow -g 60 -threads -threads 8 output.mp4

1-Pass CBR
ffmpeg -y -i input.mp4 -c:v libx264 -b:v 2M -maxrate 2M -bufsize 2M -
preset veryslow -g 60 -threads -threads 8 output.mp4

• CBR
• Target = 1x
• Max/VBV = 1x

• Bitrates and GOP size
customized for each file

• Pros
• Shorter encoding time
• Bitrate consistency

• Cons
• Overall/low-frame quality

• Use case
• Live

Capped CRF
ffmpeg -y -i input.mp4 -c:v libx264 -crf 27 -maxrate 2M -bufsize 4M -
preset veryslow -g 60 -threads -threads 8 output.mp4

• Capped CRF
• Target = crf value = ~ VMAF 94
• Max = VBR/CBR target bitrate
• VBV = 2x target

• CRF/Caps and GOP size
customized for each file

• Pros
• Reduced encoding time (single

pass)
• Bitrate reduction (form of per-title)

• Cons
• Overall/low-frame quality

• Use case
• Live/VOD

About Capped CRF

https://ottverse.com/what-is-cbr-vbr-crf-capped-crf-rate-control-explained/

https://bit.ly/4cX5q7W

Time Bitrate Max BR VMAF Low-
Frame

VBR 64:40 8,002K 18,405K 94.10 71.57
CBR 52:52 7,999K 16,477K 92.61 55.29
Capped CRF 52:42 6,525K 12,983K 91.14 54.14

VBR (8M target 16M Max)

Capped CRF (CRF 27 8M Cap)

Easy

Easy

Hard

Easy

Hard

Hard

CBR (8M target 8M Max)

Here’s What VBR’s Flexibility Gives You

Hard

Easy
Easy

Hard

Red = VBR
Green = CBR
Blue = Capped CRF

Source

2-Pass VBR

CBR

Capped CRF

Big Buck Bunny

CBR

C CRF

Office - Screencam

CBR

C CRF

Observations

Encoding savings
real but not 2x

CCRF delivers bitrate
savings as well

Overall VMAF
close

Low frame delta
is significant

400% has much
higher max frame low frame about

the same

Capped CRF Disclaimer

• Typically used instead of fixed ladder (like
Apple’s)

• So “cap” is typically much higher, like 7800
kbps
• Lots of potential bitrate reduction baked in

• In these tests, cap was same as CBR/VBR
(~95 VMAF)
• So, very little room to generate savings
• Mostly controlled by the cap, not CRF
• Cap very stringently applied, which degrades

both overall and low-frame scores
• Useful for comparison purposes, but not a fair

look

Bottom Line
• CBR

• Only when essential
• Live/tight connection bandwidths

• Capped CRF
• Alluring technology - bandwidth

savings are understated
• But

• Saves only 13% encoding time

• 2-Pass VBR
• Slight increase in encoding cost and

bandwidth
• Best overall and low-frame quality
• 200% seems the best option
• How I tested all future encodes

Best Practice 2: Bitrate Control

• Nobody ever got fired for using 200% 2-Pass VBR
• Two-pass x264 is very fast (so not 2x one-pass)
• CBR – low frame issues, no bitrate benefit
• Capped CRF

• Saves some encoding time
• Can shave significant bitrate
• Low-frame issues – legit concern, even with fair comparison

Best Practice 3: Match Preset to View Count

• Preset functions and
differences
• AWS MediaConvert - Elemental

codec
• HandBrake - x264 codec (ultrafast

> placebo)

• Fundamental tradeoff
• Preset selection math

Exploring Presets

• What does the preset do?
• Adjusts parameters to producers can choose desired
quality/encoding time tradeoff
• x264 - 10 presets - ultrafast to placebo

• Big Question: Does the preset control distribution
quality?

• Yes?
• No?

29

Preset Role

● Controls encoding time/cost, not quality
● Most producers:

○ Choose quality level (VMAF 93-95/PSNR 45) and
encode to match that quality level

● If lower quality preset doesn’t achieve target quality, you
boost the bitrate
○ So, preset doesn’t control quality, it controls encoding

cost and impacts bandwidth cost
○ Choosing a preset is always a tradeoff between

encoding cost and bandwidth cost

30

Presets: Quality vs. Encoding Time Tradeoff

31

● 24 files
● Measure

encoding time
● Harmonic mean

VMAF
● Low-frame

VMAF
● Preset and % of

maximum
time/score

● What’s the best
preset?

Medium – 99.1%
VMAF/7.7% encoding

time

Veryslow – 100%
VMAF/24%

encoding time

Next Question

32

How much do you have to boost the bitrate to match
100% quality?

 So, if your target is 95, and you use the medium
preset, what’s the required bitrate boost

H.264 Preset

33

Preset Bitrate
Encoding

time
Ultrafast 196% 6%
Superfast 171% 11%
Veryfast 151% 16%
faster 123% 19%
fast 122% 26%
Medium 112% 31%
Slow 108% 43%
Slower 106% 56%
Veryslow 100% 100%
Placebo 100% 408%

Would never use placebo,
so adjust comparisons to

veryslow

Use medium preset:
- save 69% encoding cost
- but, must boost bitrate by 12% to
achieve same quality

x264 - 1080p30 file Viewer Count Breakeven - $0.08/GB

34

Encoding cost = $.12
2.22 GB/hr @ .08 = $.18/hour
250 @ $0.18 = $45
Total = $45.12

Encoding cost = $.35
1.9168 GB/hr @ .08 = $.1533/hour
5000 @ $0.1536 = $766.72
Total = $767

x264 - 1080p30 file Viewer Count Breakeven - $0.08/GB

35

Encoding cost = $.12
2.22 GB/hr @ .08 = $.18/hour
250 @ $0.18 = $45
Total = $45.12

Encoding cost = $.35
1.9168 GB/hr @ .08 = $.1533/hour
5000 @ $0.1536 = $766.72
Total = $767

What’s the Point?
Encoding is a fraction of the overall cost of distribution.

Even at modest distributions, it makes sense to encode
at the highest possible quality

x264 - Viewer Count Breakeven - $0.04/GB

36

x264 - Viewer Count Breakeven - $0.02/GB

37

As bandwidth costs drop,
encoding cost matters longer

(but still not that long)

Best Practice 3: Preset

Best practice: Balance encoding/delivery cost
Low distribution volumes – minimize encoding cost; boost

bandwidth to achieve target quality
High distribution volumes (hundreds of hours) – maximize

encoding efficient for the lowest possible bitrate

Best Practice 4: Optimize Thread Count for Quality

• What are threads
• Impact on quality
• Impact on throughput
• Recommended for production
• Recommended for testing

What Are Threads

• Cores - physical hardware
components in CPU that execute
instructions

• Threads - virtual components that
divide tasks to be handled by the
cores
• This computer has 2 CPUs with 16 cores
• Each core has two threads
• 64 total threads

• FFmpeg – can assign threads to
command line. Impacts
• Transcoding speed
• Overall throughput
• To lesser degree, single file quality

What’s Default?

• Not sure - here’s recent encode
on 64-core workstation
• Encoding only this file

• 34 threads - let’s see impact on
quality/throughput

Impact on Quality - Overall
• Overall

• Max .52 VMAF delta -
Harmonic

• Max 6.25 VMAF - low
frame

Impact on Quality - Overall
• Overall

• Max .52 VMAF delta -
Harmonic

• Max 6.25 VMAF - low
frame

Single thread –
can do 64

encodes on this
computer (RAM

permitting)

64 threads – can
do one encode

on this computer

Unless 64 threads is
64x faster, better to

encode 64 instances
simultaneously

Soccer - 1 - 64

1-thread delivers best quality (no
surprise)

64-thread dramatically
worse (big surprise)

From a Quality Perspective

• Limit threads when encoding
on multicore machine
• For production with x264, a single

thread is always highest quality
option

• What about performance?

Cost Per Stream
• As instances increase
• And threads decrease
• FPS increases
• Until you oversaturate

threads (> 32)
• Crashing

• Quality increases as
well

Best Practice – Threads – H.264

• Low thread count with high
instances seems to deliver
• Best throughput
• Best quality

• Awful configuration for testing
(files encode so slowly)
• I tested with eight threads

Best Practice 4: Thread Count

Best practice: Balance encoding/delivery cost
Low distribution volumes – minimize encoding cost; boost

bandwidth to achieve target quality
High distribution volumes (hundreds of hours) – maximize

encoding efficient for the lowest possible bitrate

Bonus Best Practice for AWS

• Choose the best CPU for H.264 processing

Three Contestants

Amazon AMD Intel
Instance c7g.8xlarge c7a.8xlarge c7i.8xlarge
On Demand $1.1562 $1.64224 $1.428

• Goals
• ID best configuration (you’ve seen)
• ID whether going beyond CPU count is

advised (to 40)
• ID fastest CPU
• ID Least expensive CPU

• Three 32 - vCPU CPUs
• Test from 1 instance/32-cores to 40

instances/1-core (1080p veryslow
transcode)

• Computer cost per-hour to encode

30% cheaper
than AMD

13% cheaper
than AMD

https://www.johnvansickle.com/ffmpeg/

https://www.johnvansickle.com/ffmpeg/

AMD Was the Fastest
• AMD delivered fastest

throughput (minutes of
video processed per hour)

• This increased with the
number of instances

• If you’re in a hurry, use
AMD

Graviton was Lowest Cost Per Hour
• Graviton output less,

but cost a lot less as
well

• If you’re on a budget,
use Graviton

• And threads
decrease

• FPS increases
• Until you oversaturate

threads (> 32)
• Crashing

• Quality increases as
well

As Stated Previously

• Low threads/high instances
delivers:
• Best quality
• Best throughput

• Don’t go beyond cores on
workstation
• Throughput drops - all
• Intel - crashed

HEVC Agenda
• Choosing the optimal GOP size

• Benefits of a variable GOP
• Bitrate control
• Choosing a preset
• Choosing the optimal thread count
• Working with Wavefront Parallel Processing

Best Practice 1 – HEVC – Best GOP Size

• What: GOP size (I-frame
interval) is a key config option
in all encodes

• Historical
• Very small (like .5 second) for

MPEG-2
• Very long (10-20 seconds) for

downloaded video
• Typically, 2-5 seconds for adaptive

bitrate video
• Must divide evenly into segment size

• Question
• How does GOP size impact quality

• Test – 13 files in 4 categories
• Entertainment
• Sports
• Animation
• Office

Best Practice 1: Longer is Better

• Benefit significant at lower range
• About 2/3 of H.264

• Then diminishing returns

• Key limit: must divide evenly into
segment size
• 10 second copy – 1/2/5/10
• Why not try 10? Check for playability

Diminishing returns

Synthetic clips
(screencam, PPT) most
susceptible (same as

H.264)

Best Practice 1: GOP Size

Longer is better

Best Practice 2: Bitrate Control

• Tested configurations
• 1-Pass CBR
• 2-Pass (200% constrained VBR)
• 2-Pass turbo (200% constrained VBR)
• Capped CRF (constant rate factor)

Saves
encoding time

Low-Frame
issues

Bitrate highQuality high

Max
encoding time

No Low
-Frame issues

Bitrate high

Quality high

Saves 14%

All else good

Saves
encoding time

Low-frame
issues

Bitrate
savings

Quality drop

Saves
encoding time

Low-frame
issues

Bitrate
savings

Quality

Longer videos more realistic test
case for capped CRF.

Higher quality, more bitrate
savings, similar encoding savings

Bottom Line
• CBR

• Only when essential
• Live/tight connection bandwidths

• 2-Pass VBR
• Most expensive
• Best overall and low-frame

quality
• 2-Pass Turbo

• 14% cost/time savings
• No negatives

• Capped CRF
• Alluring technology - bandwidth

savings can be significant (DIY
content adaptive technique)
• Overall quality good
• Low-frame a concern
• Saves 39% encoding time

Best Practice 2: Bitrate Control

• Unlike H.264, 2-pass involves with substantial
performance penalty

Best Practice 3 – Optimal Preset

● Controls encoding time/cost, not quality
● Most producers:

○ Choose quality level (VMAF 93-95/PSNR 45) and
encode to match that quality level

● If lower quality preset doesn’t achieve target quality, you
boost the bitrate
○ So, preset doesn’t control quality, it controls encoding

cost and impacts bandwidth cost
○ Choosing a preset is always a tradeoff between

encoding cost and bandwidth cost

68

69

● Two files
● Measure encoding

time
● Harmonic mean

VMAF
● Low-frame VMAF
● Preset and % of

maximum
time/score

● What’s the best
preset?

HEVC - 8-bit 1080p Preset

70

Preset Bitrate Encoding time
Ultrafast 175% 1%

Superfast 143% 1%

Veryfast 169% 2%

faster 152% 2%

Fast 145% 3%

Medium 137% 4%

Slow 104% 8%

Slower 100% 30%

Veryslow 100% 49%

Placebo 100% 100%

Bitrate 2500

MBytes per hour 1125 Cost per GB 0.08

Encode/hr 5.5

Preset Encode Bandwidth 50 100 250 500 1000 5000

Ultrafast $0.53 2.19 $0.18 $9 $18 $44 $88 $176 $876

Superfast $0.59 1.92 $0.15 $8 $16 $39 $77 $154 $767

Veryfast $0.73 1.69 $0.13 $7 $14 $34 $68 $136 $675

faster $0.99 1.41 $0.11 $7 $12 $29 $57 $114 $564

fast $1.25 1.40 $0.11 $7 $12 $29 $57 $114 $563

Medium $1.44 1.25 $0.10 $6 $11 $27 $52 $102 $503

Slow $2.08 1.20 $0.10 $7 $12 $26 $50 $98 $483

Slower $2.95 1.17 $0.09 $8 $12 $26 $50 $97 $471

Veryslow $5.50 1.13 $0.09 $10 $15 $28 $51 $96 $456

Placebo $21.89 1.13 $0.09 $26 $31 $44 $67 $112 $473

x265 - 1080p - Viewer Count Breakeven - $0.08/GB

71

At higher bandwidth
costs, saving bandwidth

matters more than
encoding costs.

Input
parameters

x265 - 1080p - Viewer Count Breakeven - $0.04/GB

72

Bitrate 2500

MBytes per hour 1125 Cost per GB 0.04

Encode/hr 5.5

Preset Encode Bandwidth 50 100 250 500 1000 5000

Ultrafast $0.53 2.19 $0.09 $5 $9 $22 $44 $88 $438

Superfast $0.59 1.92 $0.08 $4 $8 $20 $39 $77 $384

Veryfast $0.73 1.69 $0.07 $4 $7 $18 $34 $68 $338

faster $0.99 1.41 $0.06 $4 $7 $15 $29 $57 $282

fast $1.25 1.40 $0.06 $4 $7 $15 $29 $57 $282

Medium $1.44 1.25 $0.05 $4 $6 $14 $27 $52 $252

Slow $2.08 1.20 $0.05 $4 $7 $14 $26 $50 $243

Slower $2.95 1.17 $0.05 $5 $8 $15 $26 $50 $237

Veryslow $5.50 1.13 $0.05 $8 $10 $17 $28 $51 $231

Placebo $21.89 1.13 $0.05 $24 $26 $33 $44 $67 $247

Bitrate 2500

MBytes per hour 1125 Cost per GB 0.02

Encode/hr 5.5

Preset Encode Bandwidth 50 100 250 500 1000 5000

Ultrafast $0.53 2.19 $0.04 $3 $5 $11 $22 $44 $219

Superfast $0.59 1.92 $0.04 $3 $4 $10 $20 $39 $192

Veryfast $0.73 1.69 $0.03 $2 $4 $9 $18 $34 $169

faster $0.99 1.41 $0.03 $2 $4 $8 $15 $29 $142

fast $1.25 1.40 $0.03 $3 $4 $8 $15 $29 $142

Medium $1.44 1.25 $0.03 $3 $4 $8 $14 $27 $127

Slow $2.08 1.20 $0.02 $3 $4 $8 $14 $26 $122

Slower $2.95 1.17 $0.02 $4 $5 $9 $15 $26 $120

Veryslow $5.50 1.13 $0.02 $7 $8 $11 $17 $28 $118

Placebo $21.89 1.13 $0.02 $23 $24 $28 $33 $44 $135

x265 - Viewer Count Breakeven - $0.02/GB

73

As bandwidth costs
drop, encoding

cost matters longer

Bitrate 2500

MBytes per hour 1125 Cost per GB 0.02

Encode/hr 5.5

Preset Encode Bandwidth 50 100 250 500 1000 5000

Ultrafast $0.53 2.19 $0.04 $3 $5 $11 $22 $44 $219

Superfast $0.59 1.92 $0.04 $3 $4 $10 $20 $39 $192

Veryfast $0.73 1.69 $0.03 $2 $4 $9 $18 $34 $169

faster $0.99 1.41 $0.03 $2 $4 $8 $15 $29 $142

fast $1.25 1.40 $0.03 $3 $4 $8 $15 $29 $142

Medium $1.44 1.25 $0.03 $3 $4 $8 $14 $27 $127

Slow $2.08 1.20 $0.02 $3 $4 $8 $14 $26 $122

Slower $2.95 1.17 $0.02 $4 $5 $9 $15 $26 $120

Veryslow $5.50 1.13 $0.02 $7 $8 $11 $17 $28 $118

Placebo $21.89 1.13 $0.02 $23 $24 $28 $33 $44 $135

x264 - Viewer Count Breakeven - $0.02/GB

74

As bandwidth costs
drop, encoding

cost matters longer
(but still not that

long)

Default

Best Practice - Presets

• Run tests on your own files (results will vary by content,
resolution, etc)

• Perform your own calculations
• If your typical video is viewed over 10,000 times (or so), it

almost always pay to use the veryslow preset
• Placebo almost never delivers the best quality and almost always

takes much, much longer to encode

Best Practice 4: Choose the Optimal Thread Count

• What are threads
• Impact on quality
• Impact on throughput
• Recommended for production
• Recommended for testing

Impact on Quality - Overall
• Overall

• Max .59 VMAF
delta - Harmonic

• Max .99 VMAF -
low frame

From a Quality Perspective

• Limit threads when encoding
on multicore machine

• For production with x265, a
single thread is always highest
quality option

• What about performance?

Cost Per Stream
• As instances increase
• And threads decrease
• FPS increases
• Until you oversaturate

threads (> 32)
• Crashing

• Quality increases as
well

Cost Per Stream
• As instances increase
• And threads decrease
• FPS increases

• Looks small – but 45%
• Quality increases as

well

Best Practice – Threads

• Low thread count with high
instances seems to deliver
• Best throughput
• Best quality

• Awful configuration for testing
(files encode so slowly)

• I tested with eight threads

Best Practice 5 - Wavefront Parallel Processing (WPP)

Encoding
Time

VMAF Low Frame

With WPP 03:15 90.23 77.50
No WPP 23:51 90.42 76.73
Delta 7.3x -0.19 -0.77

• Question
• Where is this additional

performance coming from?

• Enables parallel processing
• Huge boost in encoding efficiency
• Very slight drop in quality

Wavefront Parallel Processing (WPP).

• WPP uses more cores;
that’s why it’s faster (32-
core workstation)

• Compare with and
without WPP on the same
system WPP enabled

WPP disabled

Throughput With and Without WPP

• Best without WPP
• Very slightly better quality
• Very slightly better performance

• Simpler jobs win when the
system’s pushed to the
edge
• Definitely system specific

• Bottom line: Don’t assume
that the faster single-file
solution is the best for
multiple files
• Run your own tests

CPU Utilization – Different Configurations

Thread
contention limits

performance

Optimal
balance of

utilization and
capacity

Wasted capacity

• FFmpeg default scaling is
bilinear

• Tested three other methods,
best was lanczos

• Ffmpeg presentation:
• -vf scale=640×360 -sws_flags lanczos
• Not –s 640x360 (which uses bilinear)

86

https://bit.ly/42pazmC

Best Practice all: Scaling with Lanczos for Lower Rungs

Scaling - Meridian

87

Scaling - Football

88

VMAF Default Lanczos
2K @ 7M 88.50 88.62
1080p @ 3.5 MB 79.10 79.12
1080p @ 1.8 MB 68.70 68.91
720p @ 1 MB 59.67 60.06
360p @ 500 Kbps 43.25 44.90

Best Practice Scaling – Use Lanczos Where Available

89

● Lanczos delivers .75 VMAF improvement @ 1080p in Meridian
(movie clip)
● 3.76 VMAF points @ 360p

● There’s no downside – encoding time isn’t impacted
● At least with VOD presets (may be some impact live)

	Best Practices For �Encoding H.264 and HEVC
	Best Practices for H.264 and HEVC Encoding
	Fundamentals
	H.264 Agenda
	Uber Best Practice
	Best Practice 1 – Choose Longest Possible GOP Size
	Best Practice 1: Longer is Better
	Slide Number 8
	BP2: Consider Variable GOP Sizes
	Best Practice 1: GOP Size
	Best Practice 2: Optimize Bitrate Control
	2-Pass VBR
	1-Pass CBR
	Capped CRF
	About Capped CRF
	Slide Number 16
	Here’s What VBR’s Flexibility Gives You
	Source
	2-Pass VBR
	CBR
	Capped CRF
	Big Buck Bunny
	Office - Screencam
	Observations
	Capped CRF Disclaimer
	Bottom Line
	Best Practice 2: Bitrate Control
	Best Practice 3: Match Preset to View Count
	Exploring Presets
	Preset Role
	Presets: Quality vs. Encoding Time Tradeoff
	Next Question
	H.264 Preset
	x264 - 1080p30 file Viewer Count Breakeven - $0.08/GB
	x264 - 1080p30 file Viewer Count Breakeven - $0.08/GB
	x264 - Viewer Count Breakeven - $0.04/GB
	x264 - Viewer Count Breakeven - $0.02/GB
	Best Practice 3: Preset
	Best Practice 4: Optimize Thread Count for Quality
	What Are Threads
	What’s Default?
	Impact on Quality - Overall
	Impact on Quality - Overall
	Soccer - 1 - 64
	From a Quality Perspective
	Cost Per Stream
	Best Practice – Threads – H.264
	Best Practice 4: Thread Count
	Bonus Best Practice for AWS
	Three Contestants
	AMD Was the Fastest
	Graviton was Lowest Cost Per Hour
	As Stated Previously
	HEVC Agenda
	Best Practice 1 – HEVC – Best GOP Size
	Best Practice 1: Longer is Better
	Slide Number 58
	Best Practice 1: GOP Size
	Best Practice 2: Bitrate Control
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Bottom Line
	Best Practice 2: Bitrate Control
	Best Practice 3 – Optimal Preset
	Slide Number 69
	HEVC - 8-bit 1080p Preset
	x265 - 1080p - Viewer Count Breakeven - $0.08/GB
	x265 - 1080p - Viewer Count Breakeven - $0.04/GB
	x265 - Viewer Count Breakeven - $0.02/GB
	x264 - Viewer Count Breakeven - $0.02/GB
	Best Practice - Presets
	Best Practice 4: Choose the Optimal Thread Count
	Impact on Quality - Overall
	From a Quality Perspective
	Cost Per Stream
	Cost Per Stream
	Best Practice – Threads
	Best Practice 5 - Wavefront Parallel Processing (WPP)
	Wavefront Parallel Processing (WPP).
	Throughput With and Without WPP
	CPU Utilization – Different Configurations
	Best Practice all: Scaling with Lanczos for Lower Rungs
	Scaling - Meridian
	Scaling - Football
	Best Practice Scaling – Use Lanczos Where Available

